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Abstract

This paper presents a constitutive equation for no-tension materials in the presence of thermal expansion that

accounts for the temperature-dependence of their material's constants. Speci®cally, assuming that the symmetric part
of the displacement gradient minus the thermal dilatation is small, an explicit expression is given for stress from
which the free energy, internal energy, entropy and enthalpy are obtained. Then, the equilibrium energy equations

of a no-tension solid are presented, and we observe that, under further suitable hypotheses, thermo-mechanical
uncoupling occurs. Finally, the work lost during an adiabatic process by two spherical containers made of a linear
elastic and a no-tension material are compared. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the aim of modelling the behaviour of masonry structures, the constitutive equation of materials
not withstanding tension has been studied by many authors under isothermal conditions (Del Piero,
1989; Panzeca and Polizzotto, 1988). The in®nitesimal strain is assumed to be the sum of a positive
semi-de®nite inelastic part and an elastic part on which the stress, negative semi-de®nite, depends
linearly. Moreover, stress and inelastic strain, which can be interpreted as fracture strain, are
orthogonal. Thus, one obtains a non-linear hyperelastic material, called masonry-like or no-tension
material.

The existence and the uniqueness of the solution to this equation have been proved and the
solution itself calculated explicitly in the isotropic case. More recently, suitable numerical
techniques have been studied which allow application of the constitutive equation to solution of
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the equilibrium problem of masonry solids through the ®nite element method (Lucchesi et al.,

1994, 1995, 1996). These techniques have yielded sound results mainly in the study of arches and

vaults.

However, there are many engineering problems in which the presence of thermal dilatation must

be accounted for; consider for example, the in¯uence of thermal variations on stress ®elds in

masonry bridges (Guidi, 1906), or the thermo-mechanical behaviour of the refractory materials used

in the iron and steel industry (Kienow and Hennicke, 1966), and ®nally, geological problems

connected with the presence of volcanic calderas such as that of Pozzuoli (Como and Lembo,

1989). In many such cases, the thermal variation during the thermo-mechanical process under

examination is so high that the dependence of the material constants on temperature cannot be

ignored.

In what follows, we develop a constitutive equation for isotropic no-tension materials under non-

isothermal conditions. The theory presented here has allowed the study of numerical techniques for

solution to the equilibrium problem of masonry-like solids in the presence of thermal loads via the ®nite

element method (Padovani et al., 1999).

In Section 2, we present our assumptions and then set forth a non linear constitutive equation for no-

tension materials under non-isothermal conditions. In view of the target applications, no limitations are

placed on the range of temperature variation, but we do assume that the strain Eÿ b�y�I is small, with

E the symmetric part of the displacement gradient, y the absolute temperature, b�y� the thermal

expansion and I the identity tensor. We then suppose that Eÿ b�y�I is the sum of an elastic part Ee and

an inelastic part Ea, orthogonal to the stress T and positive semi-de®nite, that T is negative semi-de®nite

and depends linearly and isotropically on Ee. We thereby obtain a non-linear elastic material that in the

absence of thermal variation conforms to the masonry-like materials presented in Refs. (Del Piero, 1989;

Panzeca and Polizzotto, 1988). Once the stress is explicitly calculated as function of E and y, we can

then deduce the free energy, internal energy, entropy and enthalpy, de®ne the speci®c heat at constant

strain and the speci®c heat at constant stress, and ®nally compare them. By assuming the classical

Fourier hypothesis for heat ¯ux, the material presented here is characterised completely by ®ve functions

of the temperature: Young's modulus, Poisson's ratio, thermal expansion, conductivity and speci®c heat.

In fact, when these material functions are known, the thermodynamic potentials (and consequently the

thermo-mechanical behaviour) of the material are determined. At this point, once the energy equation

has been obtained, we are in a position to write the basic equations of the thermoelastic theory for no-

tension materials. Just as in the linear elastic case, these equations are: the strain-displacement relation,

the equilibrium equation, the constitutive equations for stress and heat ¯ux, and the equilibrium energy

equation. The system we obtain is coupled because the temperature coe�cient and the coe�cient of the

derivative of temperature with respect to time in the energy equation depend on strain and strain rate.

However, if we assume that the displacement gradient, thermal expansion and its derivative with respect

to temperature, strain rate and temperature rate are small, then the thermoelastic equilibrium equations

are uncoupled and can be integrated separately. Treatment of the theory is fully three-dimensional;

Appendix A summarises the results for plane stress.

Finally, Section 3 is devoted to consideration of two spherical containers which undergo an adiabatic

process, under the hypothesis of thermo-mechanical uncoupling. The two containers, Se and Sm, are

made of a linear elastic and a no-tension material, respectively, and are subjected to the action of two

uniform radial pressures acting on both the inner and outer boundaries and to a steady temperature

distribution. The values of temperatures and pressures on the inner and outer boundary are chosen in

such a way as the initial states of Se and Sm coincide. At the end of the adiabatic process, Se and Sm

reach the equilibrium temperatures �ye, and �ym, respectively, as calculated explicitly using the ®rst

principle of thermodynamics. Finally, the variation in entropy during the process is calculated for both
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containers, thus allowing for comparison of the work lost (Bailyn, 1994) in the transition from the initial
to ®nal state.

2. No-tension materials under non-isothermal conditions

The aim of this section is to formulate a constitutive theory and set forth the basic equations for the
thermoelastic equilibrium of isotropic no-tension solids.

Let V be a three-dimension linear space, Lin be the space of second order tensors equipped with the
inner product A � B� tr�ATB�, A, B 2 Lin, with AT the transpose of A and tr the trace functional. For
Sym, the space of all symmetric tensors, we denote by Sym+ and Symÿ the convex cones of Sym
constituted by positive semi-de®nite and negative semi-de®nite tensors, respectively.

For u the displacement ®eld, let E � �1=2��ru� ruT�, the symmetric part of the displacement
gradient, T be the Cauchy stress tensor, y 2 �y1, y2�, with y1 > 0, be the absolute temperature and y0 2
�y1, y2� the reference temperature. We suppose that the thermal dilatation due to the temperature
variation y±yt is the spherical tensor b�y�I, with I the second-order identity tensor and b�y� a material
function of the temperature called thermal expansion, with b�y0� � 0:

We assume that there exists d 2 �0, 1� such that

kEÿ b�y�IkRd, for each y 2 �y1, y2 �, �1�
where k k is the norm induced by the scalar product in Lin, kAk � �A � A�1=2: Condition (1) is equivalent
to requiring that the norm of the deviatoric part of E and the scalar b�y� ÿ 1=3 tr(E) be O�d�:1

2.1. Constitutive equations for the stress

Let E�y� and n�y� be temperature-dependent material functions, such that

E�y� > 0, 0Rn�y� < 1

2
, for each y 2 �y1, y2 �, �2�

and let us set

g�y� � n�y�
1ÿ 2n�y� : �3�

Generalising the constitutive equation of no-tension materials, we set forth a non-linear elastic
constitutive equation which associates a negative semi-de®nite stress T to each strain E±b�y�I:

We assume that

Eÿ b�y�I � Ee � Ea, �4�

T � C�y��Ee �, �5�

T � Ea � 0, �6�

1 Given a mapping B from a neighbourhood of 0 in R into a vector space with norm k � k, we write B�d� � O�d� if there exist

k > 0 and k 0 > 0 such that kB�d�k < kjdj whenever jdj < k 0:
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T 2 Symÿ, �7�

Ea 2 Sym�, �8�
where C�y� is the de®nite positive fourth-order tensor

C�y� � E�y�
1� v�y�

ÿ
I� g�y�I
 I

�
, �9�

with I the fourth-order identity tensor and I
 I de®ned by I
 I�B� � �trB�I, B 2 Lin: Ee and Ea are the
elastic part and the inelastic part of Eÿ b�y�I, respectively; Ea can be also called fracture strain because
one can expect fractures in the regions where Ea is non-zero. It can be proved that for each (E, y�
belonging to Sym � [y1, y2], T is the solution of constitutive equations (4)±(8), if and only if T 2 Symÿ

and satis®es the variational inequality

�Tÿ T�� �
�

Eÿ b�y�Iÿ C�y�ÿ1�T�
�
r0, for each T� 2 Symÿ: �10�

Inequality (10) means that T is the projection of C�y��Eÿ b�y�I� onto the closed and convex cone Symÿ,
with respect to the inner product R � S � R � C�y�ÿ1�S� in Sym. Moreover, Ea � E ÿ b�y�I ÿ C�y�ÿ1�T�
belongs to the normal cone N�T� to Symÿ at T, with

N�T� �
� �

N 2 Symj�Tÿ T�� � Nr0, 8T� 2 Symÿ
	
, if T 2 @Symÿ,

f0g, if T 2 �Symÿ��, �11�

where @Symÿ and �Symÿ��, respectively, denote the boundary and interior of Symÿ. It is an easy matter
to show that N belongs to N�T�, if and only if N 2 Sym� and N � T � 0: Moreover, if N belongs to
N(T), T and N are coaxial, and for ti and ni (i = 1, 2, 3), the eigenvalues of T and N, we have

t1n1 � t2n2 � t3n3 � 0: �12�
Let e1, e2, e3 with e1Re2Re3 be the eigenvalues of E, and f1, f2, f3, the corresponding eigenvectors. Let
us put O1� f1 
 f1, O2� f2 
 f2, O3� f3 
 f3: Since T and Ee are coaxial in view of the isotropy of C�y�,
we can conclude that f1, f2, f3 are also an eigenvectors basis for T, Ea and Ee. Due to this, from Eqs.
(4)±(8) we obtain a linear complementarity problem that can be solved by considering the following
subsets of Sym� �y1, y2�

R1 �
��E, y�j e3 ÿ b�y� � g�y�ÿtrEÿ 3b�y��R0

	
, �13�

R2 �
��E, y�j e1 ÿ b�y�r0

	
, �14�

R3 �
��E, y�j e1 ÿ b�y�R0, n�y�ÿe1 ÿ b�y��� e2 ÿ b�y�r0

	
, �15�

R4 �
��E, y�j n�y�ÿe1 ÿ b�y��� e2 ÿ b�y�R0, e3 ÿ b�y� � g�y�ÿtrEÿ 3b�y��r0

	
: �16�

By following a procedure similar to that used in Ref. (Lucchesi et al., 1995), it is possible to prove that
for each �E, y� 2 Sym� �y1, y2�, the unique solution (T, Ea) to Eqs. (4)±(8) is given by

T � C�y��Eÿ b�y�I�, for �E, y� 2 R1, �17�
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T � 0, for �E, y� 2 R2, �18�

T � E�y�ÿe1 ÿ b�y��O1, for �E, y� 2 R3, �19�

T � E�y�
1ÿ n2�y�

��
e1 ÿ b�y� � n�y�ÿe2 ÿ b�y���O1 �

�
e2 ÿ b�y� � n�y�ÿe1 ÿ b�y���O2

	
, for

�E, y� 2 R4,

�20�

where 0 is the null tensor;

Ea � 0, for �E, y� 2 R1, �21�

Ea � Eÿ b�y�I, for �E, y� 2 R2, �22�

Ea � �e2 ÿ b�y� � n�y�ÿe1 ÿ b�y���O2 �
�
e3 ÿ b�y� � n�y�ÿe1 ÿ b�y���O3, for �E, y� 2 R3, �23�

Ea � 1

1ÿ n�y�
�
e3 ÿ b�y� � n�y�ÿe1 � e2 ÿ e3 ÿ b�y���O3, for �E, y� 2 R4: �24�

It is easy to verify that in absence of temperature variations, the material characterised by the
constitutive relations (4)±(8) conforms to the isothermal no-tension material studied by Del Piero (1989)
and Panzeca and Polizzotto (1988).

The function ÃT that associates the stress given in Eqs. (17)±(20) to each �E, y� 2 Sym� �y1, y2� is
continuous, isotropic, homogeneous of degree one and monotone with respect to E,ÿ

ÃT�E1, y� ÿ ÃT�E2, y�
�
� �E1 ÿ E2�r0, for E1, E2 2 Sym: �25�

Moreover, ÃT is di�erentiable with respect to E in the interior of every region Ri:
We observe that ÃT is non-injective. On the contrary, for y 2 �y1, y2� and T 2 Symÿ, the set constituted

by all symmetric tensors A such that ÃT�A, y� � T is the convex cone

C�T, y� �
n

A 2 Sym jA � C�y�ÿ1�T� � b�y�I� ÃN�T, y�, ÃN�T, y� 2N�T�
o
, �26�

with n�T� de®ned in Eq. (11).
Let j be a function de®ned from Sym � [y1, y2� with values in R, depending on the elastic part of

Eÿ b�y�I,

j�E, y� � ~j
�
C�y�ÿ1

�
ÃT�E, y�

�
y
�
; �27�

then, we can express �j as function of T and y by setting

�j�T, y� � j
ÿ

ÃE�T, y�, y
�
, with ÃE�T, y� 2 C�T, y�: �28�

M. Lucchesi et al. / International Journal of Solids and Structures 37 (2000) 6581±6604 6585



2.2. The thermodynamical potentials

We refer to Truesdell and Noll (1965) and Carlson (1972) for a broad coverage of the
thermodynamics and thermoelasticity concepts necessary for the theory developed here.

Let Z be the entropy (per unit mass), e the internal energy, c � eÿ Zy the free energy, CE the speci®c
heat at constant strain and r the density. We assume that the following relations

ÃT�E, y� � r@Ec�E, y�, �29�

Z�E, y� � ÿ@yc�E, y�, �30�

e�E, y� � c�E, y� � yZ�E, y�, �31�

CE�E, y� � y@yZ�E, y� �32�
hold. Moreover, for q the heat ¯ux vector per unit surface area and s the heat supply per unit mass, we
have the energy equation

r_Zy � ÿdivq� sr, �33�
where the dot denotes the time derivative.

Given the stress function T � ÃT�E, y�, from the thermostatic relation (29), by accounting for the
symmetry of the fourth-order tensor @ET�E, y� and the equality @E ÃT�E, y��E ÿ b�y�I� � ÃT�E, y� both
coming from the expressions (17)±(20), we obtain the free energy

c�E, y� � 1

2r

ÿ
Eÿ b�y�I� � ÃT�E, y� � x�y�, �34�

where x�y� is a material function which will be speci®ed in the following. Note that due to Eqs. (4)±(6),
the free energy depends solely on the elastic part Ee of Eÿ b�y�I, thereby satisfying Eq. (27). In view of
Eqs. (17)±(20), from Eq. (34) we get

c�E, y� � x�y� � E�y�
2�1� n�y��r

�
n�y�

1ÿ 2n�y�
ÿ
trEÿ 3b�y��2�ÿe1 ÿ b�y��2�ÿe2 ÿ b�y��2�ÿe3 ÿ b�y��2�,

for �E, y� 2 R1, �35�

c�E, y� � x�y�, for �E, y� 2 R2, �36�

c�E, y� � x�y� � E�y�
2r

ÿ
e1 ÿ b�y�� 2, for �E, y� 2 R3, �37�

c�E, y� � x�y� � E�y�
2�1ÿ n2�y��r

nÿ
e1 ÿ b�y��2�ÿe2 ÿ b�y��2�2n�y�ÿe1 ÿ b�y��ÿe2 ÿ b�y��o, for

�E, y� 2 R4:

�38�

Let
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l � nE
�1� n��1ÿ 2n� , m � E

2�1� n� and 3w � E

1ÿ 2n
�39�

be the LameÂ moduli and the coe�cient of volumetric expansion of the material, respectively. From Eqs.
(35)±(38), by using relations Eqs. (30) and (31) we can deduce the expressions for the entropy Z and the
internal energy e:

For �E, y� 2 R1,

Z�E, y� � ÿx 0�y� ÿ l 0�y�
2r

ÿ
trEÿ 3b�y��2ÿm 0�y�

r

nÿ
e1 ÿ b�y�� 2�ÿe2 ÿ b�y��2�ÿe3 ÿ b�y�� 2o

� 3w�y�b 0�y�
r

ÿ
trEÿ 3b�y��, �40�

e�E, y� � x�y� ÿ yx 0�y� � l�y� ÿ yl 0�y�
2r

ÿ
trEÿ 3b�y��2�m�y� ÿ ym 0�y�

r

nÿ
e1 ÿ b�y��2

� ÿe2 ÿ b�y��2�ÿe3 ÿ b�y�� 2o� 3yw�y�b 0�y�
r

ÿ
trEÿ 3b�y��; �41�

for �E, y� 2 R2,

Z�E, y� � ÿx 0�y�, �42�

e�E, y� � x�y� ÿ yx 0�y�; �43�

for �E, y� 2 R3,

Z�E, y� � ÿx 0�y� ÿ E 0�y�
2r

ÿ
e1 ÿ b�y��2�E�y�b 0�y�

r

ÿ
e1 ÿ b�y��, �44�

e�E, y� � x�y� ÿ yx 0�y� � E�y� ÿ yE 0�y�
2r

ÿ
e1 ÿ b�y�� 2�yE�y�b 0�y�

r

ÿ
e1 ÿ b�y��; �45�

for �E, y� 2 R4,

Z�E, y� � ÿx 0�y� ÿ E 0�y�
ÿ
1ÿ n�y�2

�
� 2E�y�n�y�n 0�y�

2r
ÿ
1ÿ n�y�2

�2 nÿ
e1 ÿ b�y��2�ÿe2 ÿ b�y�� 2o

ÿ E 0�y�n�y�
ÿ
1ÿ n�y�2

�
� E�y�n 0�y�

ÿ
1� n�y�2

�
r
ÿ
1ÿ n�y�2

� 2 ÿ
e1 ÿ b�y��ÿe2 ÿ b�y��

� E�y�b 0�y�
r�1ÿ n�y��

ÿ
e1 � e2 ÿ 2b�y��, �46�
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e�E, y� � x�y� ÿ yx 0�y� � �E�y� ÿ yE 0�y��
ÿ
1ÿ n�y�2

�
ÿ 2yE�y�n�y�n 0�y�

2r
ÿ
1ÿ n�y�2

�2 f
ÿ
e1 ÿ b�y��2�ÿe2

ÿ b�y��2g � yE�y�b 0�y�
r�1ÿ v�y��

ÿ
e1 � e2 ÿ 2b�y��

� �E�y� ÿ yE 0�y��n�y�
ÿ
1ÿ n�y�2

�
ÿ yE�y�n 0�y�

ÿ
1� n�y�2

�
r
ÿ
1ÿ n�y�2

�2 ÿ
e1 ÿ b�y��ÿe2 ÿ b�y��; �47�

where ' denotes the derivative with respect to y:
From Eqs. (17)±(20), (40), (42), (44) and (46), we obtain the Maxwell relation

@y ÃT�E, y� � ÿr@EZ�E, y�: �48�
It is easily veri®ed that the internal energy and entropy both satisfy condition (27). In particular, in view
of Eq. (28), the internal energy can be expressed as a function of T and y, e � �e�T, y�: Thus, we can
de®ne the enthalpy per unit mass

h�T, y� � �e�T, y� ÿ 1

r
T � ÃE�T, y�, ÃE�T, y� 2 C�T, y�: �49�

And in view of the de®nition of C�T, y�, we have

h�T, y� � �e�T, y� ÿ 1

r

�
T � C�y�ÿ1�T� � b�y�trT

�
: �50�

2.3. The speci®c heat at constant strain

In this subsection we omit to indicate the dependence of w, b, l, m, E and n on y.
From Eq. (32), by accounting for Eqs. (40), (42), (44) and (46), we get the speci®c heat CE at constant

strain which has di�erent expressions in the four regions.
For �E, y� 2 R1, by virtue of Eq. (40), we have

CE1�E, y� � ÿyx 00�y� � yf
6w 0b 0 � 3wb 00

r
�trEÿ 3b� ÿ l 00

2r
�trEÿ 3b�2ÿm

00

r
kEÿ bIk2 ÿ 9wb 0 2

r g, �51�

from which we obtain

x 00�y� � ÿCE1�E, y�
y

ÿ l 00

2r
�trE�2ÿm

00

r
kEk2 � 6w 0b 0 � 3wb 00 � 3w 00b

r
trEÿ 9

r

�
w 00b2

2
� 2w 0bb 0

� wbb 00 � wb 0 2
�
: �52�

Since x 00 depends solely on temperature, the quantity CE1�E, y� ÿ y
rfÿ l 00

2 �trE�2 ÿ m 00kEk2��6w 0b 0 �3wb 00 �
3w 00b�trEg must be a function of y, say z1�y�, and thus

CE1�E, y� � z1�y� � �y=r�
n
ÿ ÿl 00=2��trE�2ÿm 00kEk2 � ÿ6w 0b 0 � 3wb 00 � 3w 00b

�
trE
o
: �53�
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Then from Eq. (52), by accounting for Eq. (53), we obtain

x 00�y� � ÿz1�y�
y
ÿ 9

r

�
w 00b2

2
� 2w 0bb 0 � wbb 00 � wb 0 2

�
: �54�

Since the thermodynamic potentials are de®ned within an arbitrary constant, we assume that they
vanish for E = 0 and y � y0; in other words, we suppose that the equalities

x�y0 � � x 0�y0� � 0 �55�
hold. From Eq. (54), in view of Eq. (55), we deduce the following relation

x�y� �
�y
y0

�
1ÿ y

y 0

�
z1�y 0 � dy 0 ÿ 9wb2

2r
, �56�

which allows determination of the function x�y�, once the speci®c heat in the region R1, and then
function z1�y� are known.

For �E, y� 2 R2, Eq. (42) yields

CE2�E, y� � ÿyx 00�y�, �57�
and then CE2 depends on temperature alone.

For �E, y� 2 R3, by virtue of Eq. (44) we have

CE3�E, y� � ÿyx 00�y� � y

(
2E 0b 0 � Eb 00

r
�e1 ÿ b� ÿ E 00

2r
�e1 ÿ b�2ÿEb

0 2

r

)
, �58�

from which we obtain

x 00�y� � ÿ CE3�E, y�
y

� 1

r

�
ÿ E 00

2
e21 �

ÿ
E 00b� 2E 0b 0 � Eb 00

�
e1

�
ÿ 1

r

�
E 00b2

2
� 2E 0bb 0 � Ebb 00 � �Eb 0 2

�
: �59�

We can put z3�y� � CE3�E, ±y��y=r�fÿ�E 00=2�e21 ��E 00b� 2E 0b 0 �Eb 00 �e1g=fen >, and thus obtain

CE3�E, y� � z3�y� � y
r

�
ÿ E 00

2
e21 �

ÿ
E 00b� 2E 0b 0 � Eb 00

�
e1

�
: �60�

By accounting for Eq. (60), (59) yields

z3�y� � ÿyx 00�y� ÿ y
r

�
E 00b2

2
� 2E 0bb 0 � Ebb 00 � Eb 0 2

�
: �61�

Finally, for �E, y� 2 R4, by accounting for Eq. (46), we get

CE4�E, y� � ÿyx 00�y� � y
n
ÿ z 01

�
�e1 ÿ b�2��e2 ÿ b� 2

�
ÿ z 02�e1 ÿ b��e2 ÿ b� � ÿ2b 0z1 � b 0z2 � z 03

�
� �e1 � e2 ÿ 2b� ÿ 2b 0z3

o
, �62�
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where

z1 �
E 0�1ÿ n2 � � 2Enn 0

2r�1ÿ n2�2 , �63�

z2 �
E 0n�1ÿ n2� � En 0

ÿ
1� n2

�
r�1ÿ n2�2 , �64�

z3 �
Eb 0

r�1ÿ n� : �65�

From Eq. (62), we obtain

x 00�y� � ÿCE4�E ,y�
y

ÿ z 01
ÿ
e21 � e22

�ÿ z 02e1e2 �
ÿ
2bz 01 � 2b 0z1 � bz 02 � b 0z2 � z 03

��e1 � e2 � ÿ 2b2z 01

ÿ 4bb 0z1 ÿ b2z 02 ÿ 2bb 0z2 ÿ 2bz 03 ÿ 2b 0z3: �66�

Since x 00 depends solely on temperature, CE4�E, y� ÿ yfÿz 01�e21 � e22 �ÿ z 02e1e2��2bz 01�2b 0z1�bz 02�b 0z2�
z 03 ��e1�e2�g must be a function of y, say z4�y�, and thus

CE4�E, y� � z4�y� � y
n
ÿ z 01

ÿ
e21 � e22

�ÿ z 02e1e2 �
ÿ
2bz 01 � 2b 0z1 � bz 02 � b 0z2 � z 03

��e1 � e2�
o
: �67�

From Eq. (66), by accounting for Eq. (67) we obtain

z4�y� � ÿyx 00�y� ÿ y
�
2b2z 01 � 4bb 0z1 � b2z 02 � 2bb 0z2 � 2bz 03 � 2b 0z3

�
: �68�

Since function x�y� and, therefore, x 00�y� are the same in the four regions, by comparing Eq. (57) and
Eqs. (52), (59) and (66), relationships between the speci®c heat in R2 and in the remaining regions
follow,

CE1�E, y� � CE2�y� ÿ 9y
r

�
w 00b2

2
� 2w 0bb 0 � wbb 00 � wb 0 2

�
� y

r

�
ÿ l 00

2
�trE�2ÿm 00kEk2 � ÿ6w 0b 0 � 3wb 00 � 3w 00b

�
trE

�
, �69�

CE3�E, y� � CE2�y� ÿ y
r

�
E 00b2

2
� 2E 0bb 0 � Ebb 00 � Eb 0 2

�
� y

r

�
ÿ E 00

2
e21 �

ÿ
E 00b� 2E 0b 0 � Eb 00

�
e1

�
, �70�

CE4�E, y� � CE2�y� � y
n
ÿ z 01

ÿ
e21 � e22

�ÿ z 02e1e2 �
ÿ
2bz 01 � 2b 0z1 � bz 02 � b 0z2 � z 03

��e1 � e2�

ÿ 2b2z 01 ÿ 4bb 0z1 ÿ b2z 02 ÿ 2bb 0z2 ÿ 2bz 03 ÿ 2b 0z3
o
: �71�
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From Eqs. (69)±(71), it follows that if the elastic constants are independent of temperature and
moreover, b 00 � 0 (namely the thermal expansion is a linear function of y), then the speci®c heats CE1,
CE3 and CE4 do not depend on strain E, but on temperature alone,

CE1�E, y� � CE2�y� ÿ 9y
r
wb 0 2, �72�

CE3�E, y� � CE2�y� ÿ y
r
Eb 0 2, �73�

CE4�E, y� � CE2�y� ÿ 2y
r�1ÿ n�Eb

0 2: �74�

On the other hand, if b 00 6�0, CE1 is a linear function of E,

CE1�E, y� � CE2�y� ÿ 9y
r

ÿ
wbb 00 � wb 0 2

�
� 3

y
r
wb 00trE; �75�

while on the contrary, CE3 and CE4 are non-linear functions of E, namely,

CE3�E, y� � CE2�y� ÿ Ey
r

ÿ
bb 00 � b 0 2

�
� y

r
Eb 00e1, �76�

CE4�E, y� � CE2�y� ÿ Ey
r�1ÿ n�

ÿ
bb 00 � b 0 2

�
� Eb 00y

r�1ÿ n� �e1 � e2 �: �77�

2.4. The speci®c heat at constant stress

We shall denote the speci®c heat at constant stress per unit mass by

CT�T, y� � @yh�T, y�, �78�
with h de®ned in Eq. (49). Setting

�Z�T, y� � Z
ÿ

ÃE�T, y�, y
�
, �79�

we can prove, by analogy to Eq. (32), that

CT�T, y� � y@y �Z�T, y�: �80�
In fact, from Eqs. (78) and (49), by virtue of Eqs. (29)±(31), we get

CT�T, y� � @ye�E, y� � @Ee�E, y� � @y ÃE�T, y� ÿ 1

r
T � @ y ÃE�T, y�

� @yc�E, y� � Z�E, y� � y@yZ�E, y� �
ÿ
@Ec�E, y� � y@EZ�E, y�

� � @y ÃE�T, y�
ÿ 1

r
T � @y ÃE�T, y� � y@yZ�E, y� � y@EZ�E, y� � @y ÃE�T, y� � y@y �Z�T, y�: �81�

The derivative @y ÃE�T, y� in Eq. (81) is well de®ned for each possible choice of ÃE�T, y� in C�T, y� and, in
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view of Eq. (26), it holds that

@y ÃE�T, y� �
ÿ
C�y�ÿ1

� 0�T� � b 0�y�I� @y ÃN�T, y�, �82�
with

C�y�ÿ1� 1� n�y�
E�y� Iÿ n�y�

E�y�I
 I: �83�

Now, we intend to establish a relationship between CE and CT: Namely, we shall prove that

CT�T, y� ÿ CE�E, y� � y
r
@y ÃT�E, y� � C�y�ÿ1

�
@y ÃT�E, y�

�
: �84�

Note that due to Eq. (83), the right-hand side of Eq. (84) is equal to �y=r�f��1� n�y��=E�y��k@y ÃT�E, y�k2
ÿ�n�y�=E�y���tr@y ÃT�E, y��2g, and then, it is of the order O�d2�:

In order to prove Eq. (84), we observe that, in view of Eqs. (80), (32) and (48), we can write,

CT�T, y� ÿ CE�E, y� � y
�
@yZ

ÿ
ÃE�T, y�, y

�
ÿ @yZ�E, y�

	
� y@EZ�E, y� � @y ÃE�T, y�

� ÿy
r
@ y ÃT�E, y� � @ y ÃE�T, y�: �85�

On the other hand, using the chain rule we get

@y ÃE�T, y� � ÿ@T ÃE�T, y�
�
@y ÃT�E, y�

�
� @y ÃN�T, y� �86�

and ®nally, accounting for the orthogonality of @y ÃN�T, y� and @y ÃT�E, y� due to Eq. (12), Eq. (85)
becomes

CT�T, y� ÿ CE�E, y� � y
r
@y ÃT�E, y� � @T ÃE�T, y�

�
@ y ÃT�E, y�

�
: �87�

From Eq. (26), we obtain the relation

@T ÃE�T, y� � C�y�ÿ1�@T ÃN�T, y�; �88�
moreover, it is an easy matter to prove that in light of Eq. (12), it holds that @T ÃN�T, y��Oi � � 0, for
every i such that the ith eigenvalue of T is negative. From Eqs. (17)±(20) we deduce that @y ÃT�E, y� has
the same eigenvectors as T � ÃT�E, y� and can thus conclude that

@T ÃN�T, y�
�
@y ÃT�E, y�

�
� 0: �89�

Finally, by accounting for Eqs. (88) and (89), relation (84) follows from Eq. (87).

2.5. The energy equation

In order to complete the system of constitutive equations, we assume the usual relation for heat ¯ux

q � ÿk�y�g, �90�
where k�y�r0 is the conductivity coe�cient, and g � grady the temperature gradient.
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The material having constitutive relations (35)±(38), (40)±(47), (52), (17)±(20), (51), (57), (58), (62) and
(90) is wholly characterised by ®ve temperature-dependent functions E�y�, n�y�, b�y�, k�y� and x�y�:
Moreover, from relations (48) and (32) we can deduce that

_Z�E, y� � @EZ�E, y� � ÇE� @yZ�E, y�_y � ÿ1

r
@ yT�E, y� � ÇE� 1

y
CE�E, y�_y: �91�

By then accounting for Eqs. (17)±(20) and (33), we can write the energy equation in the four regions Ri:
For �E, y� 2 R1,

ÿdivq� y
�
2m 0�y�E � ÇE� l 0�y�trE tr ÇEÿ 3�wb� 0tr ÇE

	
� rs � rCE1�E, y�_y, �92�

for �E, y� 2 R2,

ÿdiv q� rs � ÿryx 00�y�_y, �93�
for �E, y� 2 R3,

ÿdivq� y
n
E 0�y�ÿe1 ÿ b�y��O1 � ÇEÿ E�y�b 0�y�O1 � ÇE

o
� rs � ÿrCE3�E, y�_y, �94�

for �E, y� 2 R4,

ÿdivq� yf
E 0�y�

ÿ
1ÿ n�y�2

�
� 2E�y�n�y�n 0�y�ÿ

1ÿ n�y�2
�2 �

ÿ
e1 � n�y�e2�1� n�y��b�y��O1 � ÇE� ÿe2 � n�y�e1

ÿ �1� n�y��b�y��O2 � ÇE� �
E�y�

1ÿ n�y�2 �
ÿ
n 0�y�e2 ÿ b 0�y� ÿ n 0�y�b�y� ÿ n�y�b 0�y��O1 � ÇE

� ÿn 0�y�e1 ÿ b 0�y� ÿ n 0�y�b�y� ÿ n�y�b 0�y��O2 � ÇE�g � rs

� rCE4�E, y�_y: �95�

Thus, the basic equations of the thermoelastic theory are the strain-displacement relation, the
equilibrium equation, constitutive relations (17)±(20) and (90) for stress and heat ¯ux, respectively, and
®nally, the equilibrium energy equations (92)±(95). The system of equations obtained is coupled because
the temperature coe�cient on the left-hand side and the coe�cient of the derivative of temperature on
the right-hand side of the energy equations (92)±(95) depend on the strain and strain rate. In particular,
if we assume separately

E � O�d�, b�y� � O�d�, b 0�y� � O�d�, ÇE � O�d�, _y � O�d�, �96�
energy equations (92)±(95) can be simpli®ed; in fact, by disregarding terms of order O�d2�, we obtain

ÿdivq� rs � ÿryx 00�y�_y �97�
for all regions, and thermo-mechanical uncoupling occurs.

Finally, if for temperature the further condition

y � y0 �O�d�, �98�
holds, with y0 as the reference temperature, then we have
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b�y� � b�y0� � b 0�y0 ��yÿ y0� � o�d�, �99�
(given a mapping B from a neighbourhood of 0 in R into a vector space with norm k � k, we write
B�d� � o�d� if for each k > 0 there is k 0 > 0 such that kB�d�k < kjdj, whenever jdj < k 0� and thus, taking
into account that b�y0� � 0, we get within an error of order o�d�

b�y� � b 0�y0��yÿ y0� �100�
in a neighbourhood of y � y0: The quantity

a � b 0�y0 � �101�
is the linear coe�cient of thermal expansion. Moreover, in this case, functions E, n, b, k and CE must be
supposed temperature-independent and coincident with their value at y0 (Carlson, 1972).

The equilibrium problem for no-tension solids has been studied in recent years and the existence of a
solution has been proved only for a rather restricted class of load conditions (Anzellotti, 1985;
Giaquinta and Giusti, 1985). However, the uniqueness of the solution is guaranteed in terms of stress
alone, in the sense that di�erent displacement and strain ®elds can correspond to the same stress ®eld.
Similar considerations can be made for a no-tension material with constitutive equations (4)±(8).

3. An example

In this section, we compare the thermodynamical behaviour of a linear elastic and a no-tension elastic
body in order to reveal eventual di�erences. Speci®cally, under the hypothesis of thermo-mechanical
uncoupling, we consider two spherical containers Se and Sm with inner radius r1 and outer radius r2,
subjected to two uniform radial pressures p1 and p2 acting on the inner and outer boundaries,
respectively (Fig. 1).

Container Se is made of a linear elastic material, and Sm is made of a no-tension elastic material
with constitutive equations (4)±(8). In the initial state, the two containers are subjected to a steady
temperature distribution. The temperatures assigned to the containers boundaries as well as the radial
pressures are chosen in such a way that the initial state Fm of Sm coincides with the initial state Fe of
Se: In particular, Se and Sm are characterised by the same purely compressive stress ®eld, and
fractures are, therefore, absent in Sm: By means of an adiabatic process, with the boundary radial
pressures kept unchanged, Se reaches the ®nal state Fe, characterised by an equilibrium temperature �ye

and a stress ®eld exhibiting tractions. The unknown temperature �ye is calculated explicitly by using the
®rst principle of thermodynamics, imposing that the variation in internal energy equals the work done
by the external loads passing from the state De to Fe: We proceed in an analogous manner for
container Sm, which adiabatically reaches the ®nal state Fm corresponding to the equilibrium
temperature �ym: In this case, due to our choice of the ratio p2=p1 in the interval �r21 =r22 , �2r31 � r32�=3r32�
(Bennati et al., 1997), the container presents cracking in the region r1RrRr0 with r0, less than or equal
to r2, depending on r1, r2 and p2=p1 and is entirely compressed in the remaining region (Fig. 2).

Finally, the variation in entropy passing from the initial to the ®nal state is calculated for both Sm

and Se, and then, the work lost in the two cases is evaluated.
At the beginning of the process, containers Se and Sm are subjected to a steady temperature

distribution y depending on the radius r,

y�r� ÿ y0 � r1r2�W1 ÿ W2�
r2 ÿ r1

1

r
� r2W2 ÿ r1W1

r2 ÿ r1
, �102�
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with y0 as the reference temperature; y1 � W1 � y0 and y2 � W2 � y0 are the temperature of the inner and
outer boundaries, respectively.

We assume that Young's modulus E is independent of temperature and Poisson's ratio n is zero.
Moreover, for thermal expansion b we assume the linear temperature function b�y� � a�yÿ y0�:

We start by determining the stress ®eld corresponding to a linear elastic material. Denoting by sr and
st the radial and tangential components of the stress, respectively, we have

Fig. 1. The spherical container.

Fig. 2. The cracked spherical container.

M. Lucchesi et al. / International Journal of Solids and Structures 37 (2000) 6581±6604 6595



sr�r� � r31r
3
2

r32 ÿ r31

�
aE�W1 ÿ W2� ÿ p1 � p2

� 1
r3
ÿ r1r2

r2 ÿ r1
aE�W1 ÿ W2�1

r
� 1

r32 ÿ r31

�
p1r

3
1 ÿ p2r

3
2

� aEr1r2�r1 � r2��W1 ÿ W2�
�
, �103�

st�r� � ÿ r31r
3
2

2
ÿ
r32 ÿ r31

��aE�W1 ÿ W2 � ÿ p1 � p2
� 1
r3
ÿ r1r2

2�r2 ÿ r1�aE
�W1 ÿ W2�1

r
� 1

r32 ÿ r31

�
p1r

3
1 ÿ p2r

3
2

� aEr1r2�r1 � r2��W1 ÿ W2�
�
: �104�

It is easy matter to prove that for ®xed r1, r2, E and a, there exist values of parameters y1, y2, p1 and p2
such that the stress ®elds (103) and (104) is negative semi-de®nite; and thus, it is the solution
corresponding to both a linear and a no-tension elastic material. The radial component u of the
displacement ®eld associated with the stress (103) and (104) is

u�r� � r31r
3
2

2
ÿ
r32 ÿ r31

��p1 ÿ p2
E
ÿ a�W1 ÿ W2�

�
1

r2
� r1r2

2�r2 ÿ r1�a
�W1 ÿ W2� �

"
p1r

3
1 ÿ p2r

3
2

E
ÿ
r32 ÿ r31

�
� a

W2r2 ÿ W1r1
r2 ÿ r1

� a
r1r2�r1 � r2�

r32 ÿ r31
�W1 ÿ W2�

#
r: �105�

In particular, the displacements of the points belonging to the inner and outer boundaries,
corresponding to the initial state are

ui1 � u�r1� � r1
p1r

3
1 ÿ p2r

3
2

E
ÿ
r32 ÿ r31

� � r1r
3
2�p1 ÿ p2�

2E
ÿ
r32 ÿ r31

� � ar1
W2r2 ÿ W1r1
r2 ÿ r1

� 3a
r21 r2�r1 � r2�
2
ÿ
r32 ÿ r31

� �W1 ÿ W2 � �106�

and

ui2 � u�r2� � r2
p1r

3
1 ÿ p2r

3
2

E
ÿ
r32 ÿ r31

� � r31r2�p1 ÿ p2�
2E
ÿ
r32 ÿ r31

� � ar2
W2r2 ÿ W1r1
r2 ÿ r1

� 3a
r1r

2
2 �r1 � r2�

2
ÿ
r32 ÿ r31

� �W1 ÿ W2 �, �107�

respectively.
By assuming that the speci®c heat at constant strain CE is constant, in view of Eqs. (56) and (53), we

obtain x as a function of temperature y

x�y� � CE�yÿ y0� ÿ CEy ln

�
y
y0

�
ÿ 3Ea2

2r
�yÿ y0� 2: �108�

From Eq. (41), by accounting for Eq. (108), we get the internal energy per unit mass ei as a function of
r, corresponding to the initial state

ei�r� � CE

ÿ
y�r� ÿ y0

�� 3Ea2

2r

�
y�r�2ÿy2

0

�
� 1

2Er

ÿ
sr�r�2�2st�r�2

�
� a

r
y�r�ÿsr�r� � 2st�r�

�
, �109�

from which we obtain the internal energy associated to the initial state
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Ii � 4pr
�r2
r1

ei�r�r2 dr: �110�

Using relation (40) and taking Eq. (108) into account, we get the entropy per unit mass Zi as a function
of r, corresponding to the initial state

Zi�r� � CE ln

�
y�r�
y0

�
� 3Ea2

r

ÿ
y�r� ÿ y0

�� a
r

ÿ
sr�r� � 2st�r�

�
: �111�

In view of the Signorini theorem (see Gurtin, 1981, p. 113) the integral of sr � 2st over the container
depends solely on p1, p2, r1 and r2. Since external loads do not change passing from the initial state to
the ®nal state, the contribution of �a=r��sr�r� � 2st�r�� to the total entropy is the same for the two states;
thus, it is su�cient to consider the part of entropy related to temperature which, in view of Eq. (111), is

Hi � 4prCE

�r2
r1

r2 ln

�
y�r�
y0

�
dr� 12Ea2p

�r2
r1

r2
ÿ
y�r� ÿ y0

�
dr: �112�

Now, let us consider the ®nal state Fe of container Se, which adiabatically reaches the equilibrium
temperature �ye, while maintaining constant pressures p1 and p2, for the moment unknown. The
corresponding stress ®eld has components

se
r �r� � ÿ

r31r
3
2�p1 ÿ p2�
r32 ÿ r31

1

r3
� p1r

3
1 ÿ p2r

3
2

r32 ÿ r31
, �113�

se
t �r� �

r31r
3
2�p1 ÿ p2�

2
ÿ
r32 ÿ r31

� 1

r3
� p1r

3
1 ÿ p2r

3
2

r32 ÿ r31
, �114�

and is independent of �ye: The radial displacement associated to Eqs. (113) and (114) is

ue�r� � r31r
3
2�p1 ÿ p2�

2E
ÿ
r32 ÿ r31

� 1

r2
�
"
p1r

3
1 ÿ p2r

3
2

E
ÿ
r32 ÿ r31

� � a
ÿ
�ye ÿ y0

�#
r; �115�

in particular, the displacements of the inner and outer boundaries are

ue
f1 � ue�r1� �

r1r
3
2�p1 ÿ p2 �

2E
ÿ
r32 ÿ r31

� � p1r
4
1 ÿ p2r

3
2r1

E
ÿ
r32 ÿ r31

� � ar1
ÿ
�ye ÿ y0

�
, �116�

ue
f2 � ue�r2� �

r31r2�p1 ÿ p2 �
2E
ÿ
r32 ÿ r31

� � p1r
3
1r2 ÿ p2r

4
2

E
ÿ
r32 ÿ r31

� � ar2
ÿ
�ye ÿ y0

�
: �117�

The internal energy per unit mass ee
f as a function of r, corresponding to the state Fe is

ee
f �r� � CE

ÿ
�ye ÿ y0

�
� 3Ea2

2r

�
�y
2

e ÿ y2
0

�
� 1

2Er

ÿ
se

r �r�2�2se
t �r�2

�� a
r

�ye

ÿ
se

r �r� � 2se
t �r�

�
, �118�

from which we calculate the internal energy
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I e
f � 4pr

�r2
r1

ee
f �r�r2 dr � 4

3
prCE

ÿ
r32 ÿ r31

�ÿ
�ye ÿ y0

�
� 2pEa2

ÿ
r32 ÿ r31

��
�y
2

e ÿ y2
0

�
� 4pa

ÿ
p1r

3
1

ÿ p2r
3
2

�
�ye � Ee, �119�

with

Ee � 2p
E

�r2
r1

ÿ
se

r �r�2�2se
t �r�2

�
r2 dr: �120�

Finally, the work L e done by p1 and p2 passing from the initial state to the ®nal one is

Le � 4pr21
ÿ
ue

f1 ÿ ui1

�
p1 ÿ 4pr22

ÿ
ue

f2 ÿ ui2

�
p2 � 4pa

ÿ
p1r

3
1 ÿ p2r

3
2

�ÿ
�ye ÿ y0

�
�Le, �121�

with

Le � 4pr21

"
r1r

3
2�p1 ÿ p2�

2E
ÿ
r32 ÿ r31

� � p1r
4
1 ÿ p2r

3
2r1

E
ÿ
r32 ÿ r31

� ÿ ui1

#
p1 ÿ 4pr22

"
r31r2�p1 ÿ p2�
2E
ÿ
r32 ÿ r31

� � p1r
3
1r2 ÿ p2r

4
2

E
ÿ
r32 ÿ r31

� ÿ ui2

#
p2:

�122�

We are now in a position to apply the ®rst principle of thermodynamics, setting the variation in internal
energy equal to the work of loads p1 and p2,

I e
f � Ii � Le: �123�

By accounting for Eqs. (110), (119) and (121), relation (123) can be written as the second degree
equation

F1
�y
2

e � F2
�ye � F3 � 0, �124�

whose coe�cients F1, F2 and F3 have the following expressions

F1 � 2pEa2
ÿ
r32 ÿ r31

�
,

F2 � 4

3
prCE

ÿ
r32 ÿ r31

�
,

F3 � Ee ÿ Ei ÿLe � 4pa
ÿ
p1r

3
1 ÿ p2r

3
2

�
y0 ÿ 2pEa2

ÿ
r32 ÿ r31

�
y2
0 ÿ

4

3
prCE

ÿ
r32 ÿ r31

�
y0: �125�

Thus, �ye is the positive root of Eq. (124). The ®nal entropy per unit mass as a function of r is

Ze
f �r� � CE ln

 
�ye

y0

!
� 3Ea2

r

ÿ
�ye ÿ y0

�
� a

r

ÿ
se

r �r� � 2se
t �r�

�
: �126�

As in the initial state, it is su�cient to consider the part of entropy related to the temperature which,
from Eq. (126), is

M. Lucchesi et al. / International Journal of Solids and Structures 37 (2000) 6581±66046598



H e
f �

4

3
prCE ln

 
�ye

y0

!ÿ
r32 ÿ r31

�� 4pEa2
ÿ
�ye ÿ y0

�ÿ
r32 ÿ r31

�
: �127�

Now, let us consider the ®nal state Fm of container Sm that with the same pressures p1 and p2,
adiabatically reaches the equilibrium temperature �ym, which must be determined.

The radial stress (113) is purely compressive. On the other hand, there exist values of p1 and p2 such
that the tangential stress (114) is positive starting at r = r1, vanishes at a point r� 2 �r1, r2� and becomes
negative up to r = r2. Thus, for certain values of p1 and p2, if the material does not withstand tension,
the stress ®eld (113) and (114) does not represent a solution to the equilibrium problem. With a
procedure similar to that used in Ref. (Padovani, 1996) it is possible, by starting out with the elastic
solution (113) and (114) corresponding to a linear material, to calculate a negative semi-de®nite stress
®eld equilibrated with the loads, which is therefore the solution to the equilibrium problem of Sm: Such
a stress ®eld has components

sm
r �r� �

8>>><>>>:
ÿp1 r0

r2
r 2 �r1, r0 �,

ÿr
3
0r

3
2�p0 ÿ p2 �
r32 ÿ r30

1

r3
� p0r

3
0 ÿ p2r

3
2

r32 ÿ r30
, r 2 �r0, r2 �,

�128�

sm
t �r� �

8>><>>:
0, r 2 �r1, r0 �,
r30r

3
2�p0 ÿ p2�

2
ÿ
r32 ÿ r30

� 1

r3
� p0r

3
0 ÿ p2r

3
2

r32 ÿ r30
, r 2 �r0, r2 �,

�129�

with p0 � p1�r21 =r20 � and r0 being the unique root belonging to the interval [r1, r2] of the third degree
equation

2p1r
2
1 r

3 ÿ 3p2r
3
2r

2 � p1r
2
1 r

3
2 � 0: �130�

Thus, the spherical region Pf , with inner radius r1 and outer radius r0, exhibits radial fractures; while
the remaining region Pc, with inner radius r0 and outer radius r2, is entirely compressed.

The radial displacement associated to Eqs. (128) and (129) is

um�r� �

8>>>>><>>>>>:
r21 p1
E

1

r
� p0r

4
0 ÿ p2r0r

3
2

E
ÿ
r32 ÿ r30

� � r0r
3
2�p0 ÿ p2 �

2E
ÿ
r32 ÿ r30

� ÿ r21 p1
Er0
� a

ÿ
�ym ÿ y0

�
r, r 2 �r1, r0 �,

r30r
3
2�p0 ÿ p2�

2E
ÿ
r32 ÿ r30

� 1

r2
�
(
p0r

3
0 ÿ p2r

3
2

E
ÿ
r32 ÿ r30

� � a
ÿ
�ym ÿ y0

�)
r, r 2 �r0, r2 �;

�131�

in particular, in place of Eqs. (116) and (117), we have

um
f1 � um�r1� � r1p1

E
� p0r

4
0 ÿ p2r0r

3
2

E
ÿ
r32 ÿ r30

� � r0r
3
2�p0 ÿ p2�

2E
ÿ
r32 ÿ r30

� ÿ r21 p1
Er0
� a

ÿ
�ym ÿ y0

�
r1, �132�

um
f2 � um�r2� �

r30r2�p0 ÿ p2 �
2E
ÿ
r32 ÿ r30

� � p0r
3
0r2 ÿ p2r

4
2

E
ÿ
r32 ÿ r30

� � ar2
ÿ
�ym ÿ y0

�
: �133�
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The internal energy per unit mass em
f , as a function of r corresponding to the ®nal state Fm is

em
f �r� � CE

ÿ
�ym ÿ y0

�
� 3Ea2

2r

�
�y
2

m ÿ y2
0

�
� 1

2Er

ÿ
sm

r �r�2�2sm
t �r�2

�� a
r

�ym

ÿ
sm

r �r� � 2sm
t �r�

�
, �134�

from which we obtain the internal energy

I m
f � 4pr

�r2
r1

em
f �r�r2 dr � 4

3
prCE

ÿ
r32 ÿ r31

�ÿ
�ym ÿ y0

�
� 2pEa2

ÿ
r32 ÿ r31

��
�y
2

m ÿ y2
0

�
� 4pa

ÿ
p1r

3
1

ÿ p2r
3
2

�
�ym � Em, �135�

where

Em � 2p
E

�r2
r1

ÿ
sm

r �r�2�2sm
t �r�2

�
r2 dr: �136�

The work Lm done by the loads is

Lm � 4pr21
ÿ
um

f1 ÿ ui1

�
p1 ÿ 4pr22

ÿ
um

f2 ÿ ui2

�
p2 � 4pa

ÿ
p1r

3
1 ÿ p2r

3
2

�ÿ
�ym ÿ y0

�
�Lm, �137�

with

Lm � 4pr21

 
r0r

3
2�p0 ÿ p2�

2E
ÿ
r32 ÿ r30

� � p0r
4
0 ÿ p2r

3
2r0

E
ÿ
r32 ÿ r30

� � r1p1
E
ÿ r21 p1

Er0
ÿ ui1

!
p1 ÿ 4pr22

 
r30r2�p0 ÿ p2�
2E
ÿ
r32 ÿ r30

�
� p0r

3
0r2 ÿ p2r

4
2

E
ÿ
r32 ÿ r30

� ÿ ui2

!
p2: �138�

In view of the ®rst principle of thermodynamics, by accounting for Eqs. (110), (135) and (137), �ym is a
solution to the algebraic equation

F1
�y
2

m � F2
�ym �D3 � 0, �139�

where coe�cients F1 and F2 are given in Eq. (125) and

D3 � Em ÿ Ei ÿLm � 4pa
ÿ
p1r

3
1 ÿ p2r

3
2

�
y0 ÿ 2pEa2

ÿ
r32 ÿ r31

�
y2
0 ÿ

4

3
prCE

ÿ
r32 ÿ r31

�
y0: �140�

The ®nal entropy per unit mass is

Zm
f �r� � CE ln

 
�ym

y0

!
� 3Ea2

r

ÿ
�ym ÿ y0

�
� a

r

ÿ
sm

r �r� � 2sm
t �r�

�
, �141�

and the ®nal entropy related to temperature is

H m
f �

4

3
prCE ln

 
�ym

y0

!ÿ
r32 ÿ r31

�� 4pEa2
ÿ
�ym ÿ y0

�ÿ
r32 ÿ r31

�
: �142�

By means of relations (72) and (73), we obtain the expression for the speci®c heat CE3 in the cracked
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region Pf , which is

CE3�y� � CE � 2Ea2

r
y: �143�

We observe that, since we have assumed the speci®c heat of the material subjected to purely compressive
stress ®eld to be constant, from Eq. (143) we deduce that when the material is cracked, its speci®c heat
cannot be constant, but depends on temperature.

With the aim of comparing the ®nal temperatures �ye and �ym, we point out that

F3 � D3 � D, �144�
with

D � p
E

(
ÿ 1

r32 ÿ r31

h
2
ÿ
r31p1 ÿ r32p2

� 2�r31r32�p1 ÿ p2 �2
i
� 2

r0
�r0 ÿ r1 �r31p2

1

� 1

r32 ÿ r30

�
2p2

1 r
4
1r

2
0 ÿ 6p1p2r

2
1 r

3
2r0 �

r41r
3
2

r0
p2
1 � 2p2

2 r
6
2 � p2

2 r
3
2r

3
0

�)
: �145�

For r1, r2 and p1 ®xed, D is a function of p2=p1 with domain �r21 =r22 , �2r31 � r32�=3r32). In particular, for
p2=p1 � �2r31 � r32�=3r32 we have r0 = r1 and D � 0 and, consequently, �ye � �ym: Moreover, it is a simple
matter to show that the limit of D�p2=p1� for p2=p1 going to r21 =r

2
2 is positive, and that D is a decreasing

function of p2=p1; D is therefore positive. From Eqs. (124) and (139), by accounting for Eq. (144), we
get the di�erence o between �ye and �ym

o � �ym ÿ �ye � 2Dÿ
F 2

2 ÿ 4F1D3

�1=2�ÿF 2
2 ÿ 4F1�D3 � D��1=2 , �146�

which is positive in view of the positiveness of D: From Eqs. (127) and (142) we obtain

H m
f � H e

f �
4

3
prCE

ÿ
r32 ÿ r31

�
ln

 
�ye � o

�ye

!
� 4pEa2

ÿ
r32 ÿ r31

�
o �147�

and, by virtue of the positiveness of o, we can conclude that

H m
f rH e

f : �148�
Denoting by

De � ÿH e
f ÿHi

�
y0 and Dm � ÿH m

f ÿHi

�
y0, �149�

the work lost in the process (Bailyn, 1994) by containers Se and Sm, respectively, from Eq. (148), we
get

DeEDm: �150�
Fig. 3 illustrates the behaviour of o as a function of the ratio p2=p1 varying in the interval �1=t2, �2�
t3�=3t3� in correspondence of t � 2 (continuous line), 3 (dotted line) and 4 (dashed line) with t � r2=r1:
The graphs have been obtained using the following parameter values

E = 5� 109 Pa,
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n � 0,
y0 � 303:15 K,
y1 � W1 � y0 � 325:15 K,
y2 � W2 � y0 � 293:15 K,
p1 = 3.4� 106 Pa,
a � 1� 10ÿ5 Kÿ1,
CE � 1046 J/Kg K,
r � 2000 Kg/m3.

4. Conclusions

This paper has set forth a constitutive equation for no-tension isotropic materials in the presence of
thermal expansion, as well as the basic coupled equations for thermoelastic equilibrium while accounting
for the temperature dependence of material constants. In the absence of thermal variations, this
constitutive model coincides to the model for no-tension materials.

Since this kind of constitutive equation allows one to explicitly calculate, not only the stress as a
function of temperature and strain, but also the derivative of the stress with respect to the strain, it is
particularly suited for use in a ®nite element code for solving equilibrium problems of no-tension solids
subjected to thermal loads via the Newton±Raphson method (Padovani et al., 1999), in a manner
analogous to that performed in Refs. (Lucchesi et al., 1994, 1995, 1996).

The simple example also presented demonstrates that the work lost in an adiabatic process is greater
in a solid made of a no-tension material than in a solid made of a linear elastic material.

Fig. 3. o vs. p2=p1 for di�erent values of t:
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Appendix A

Let us consider a plane stress situation and suppose t3 � q3 � T q, 3 � 0: Denoting by E the restriction
of the strain tensor to the two-dimensional space orthogonal to q3 and by e1Re2, the eigenvalues of E,
we de®ne the following subsets of Sym� �y1, y2�:

Q1 �
��E, y�j n�y�ÿe1 ÿ b�y��� e2 ÿ b�y�R0

	
, �A1�

Q2 �
��E, y�j n�y�ÿe1 ÿ b�y��� e2 ÿ b�y� > 0, e1 ÿ b�y�R0

	
, �A2�

Q3 �
��E, y�j e1 ÿ b�y� > 0

	
: �A3�

The expressions for the stress in the three regions are

if �E, y� 2 Q1, then

T�E, y� � E�y�
1� n�y�

�
Eÿ b�y�I� n�y�

1ÿ n�y� tr
ÿ
Eÿ b�y�I�I�; �A4�

if �E, y� 2 Q2, then

T�E, y� � E�y�ÿe1 ÿ b�y��q1 
 q1; �A5�
if �E, y� 2 Q3, then

T�E ,y� � 0: �A6�

And ®nally, the expressions for free energy and entropy are

c�E, y� � x�y� � E�y�
2
ÿ
1ÿ n�y�2

�
r

�
e21 � e22 � 2n�y�e1e2 � 2�1� n�y��b�y�ÿb�y� ÿ e1 ÿ e2

�	
,

for �E, y� 2 Q1,

�A7�

c�E, y� � x�y� � E�y�
2r

ÿ
e1 ÿ b�y�� 2, for �E, y� 2 Q2, �A8�

c�E, y� � x�y�, for �E, y� 2 Q3; �A9�
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Z�E, y� � ÿx 0�y� ÿ E 0�y�
ÿ
1ÿ n2�y�

�
� 2n�y�n 0�y�E�y�

2r�1ÿ n2�y��2
�
e21 � e22 � 2n�y�e1e2 � 2�1� n�y��b�y�

� ÿb�y� ÿ e1 ÿ e2
�	ÿ E�y�

2
ÿ
1ÿ n�y�2

�
r

�
2n 0�y�e1e2 � 2n 0�y�b�y�ÿb�y� ÿ e1 ÿ e2

�� 2�1

� n�y��b 0�y�ÿb�y� ÿ e1 ÿ e2
�� 2�1� n�y��b�y�b 0�y�	,

for �E, y� 2 Q1,

�A10�

Z�E, y� � ÿx 0�y� ÿ E 0�y�
2r

ÿ
e1 ÿ b�y��2�E�y�

r
b 0�y�ÿe1 ÿ b�y��, for �E, y� 2 Q2, �A11�

Z�E, y� � ÿx 0�y�, for �E, y� 2 Q3: �A12�
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